Continuous Time General Equilibrium

Wenhao Li

November 7, 2017

Table of Contents

(1) A Comparison of Continuous Time and Discrete Time General Equilibrium
(2) Individual Portfolio Choice Problems
(3) Two Agent Economy

An Endowment Economy in Discrete Time

- A unit mass of productive assets that produce consumption goods Y_{t} in each period, where the process follows an $\operatorname{AR}(1)$ process

$$
\ln \left(Y_{t+1}\right)=\phi \ln \left(Y_{t}\right)+\sigma \varepsilon_{t+1}
$$

- A continuum of households live in the economy. They can trade both the riskfree bonds and the productive asset in a fully competitive market. Objective function:

$$
\max E\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right]
$$

- Denote price of productive asset as P_{t} (after production) and interest rate as R_{t}.
- Question: Solve for the price of the productive asset and interest rate in a recursive equilibrium.

An Endowment Economy in Discrete Time

- Step 1: Determine state variables.
- The same preference \Rightarrow Only the aggregate matters $\Rightarrow Y_{t}$ is the only state variable. T or F?

An Endowment Economy in Discrete Time

- Step 1: Determine state variables.
- The same preference \Rightarrow Only the aggregate matters $\Rightarrow Y_{t}$ is the only state variable. T or F ?
- Counterexample: A simple two-period economy, with storage technology and initial endowment $\left\{e_{i}, i \in[0,1]\right\}$, and initial production $Y_{0}=\sum_{i} e_{i}$. Set utility function as $u(c)=c-1 / c$.

$$
\max _{c_{i}} u\left(c_{i}\right)+\beta u\left(e_{i}-c_{i}\right) \Rightarrow 1+\frac{1}{c_{i}^{2}}=\beta\left(1+\frac{1}{\left(e_{i}-c_{i}\right)^{2}}\right)
$$

An Endowment Economy in Discrete Time

- Step 1: Determine state variables.
- Let's assume $u(c)=c^{1-\gamma} /(1-\gamma)$, which will generate the property needed for aggregation. Other more complex utilities, including Epstein-Zin, will also work. Then the state variable is only Y_{t}.
- Typical asset pricing exercise will stop here:

$$
\begin{gathered}
E_{t}\left[\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)} \frac{P_{t+1}+Y_{t+1}}{P_{t}}\right]=1 \\
E_{t}\left[\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)} R_{f, t+1}\right]=1
\end{gathered}
$$

- However, this is not enough for fully solving a general equilibrium.

An Endowment Economy in Discrete Time

- Step 2: Individual optimization problem.

$$
\begin{aligned}
& V\left(w_{t}, Y_{t}\right)=\max _{x_{t}, c_{t}}\left\{u\left(c_{t}\right)+\beta E_{t}\left[V\left(w_{t+1}, Y_{t+1}\right)\right]\right\} \\
& \left\{\begin{array}{l}
w_{t+1}=w_{t} x_{t} \frac{P_{t+1}+Y_{t+1}}{P_{t}}+w_{t}\left(1-x_{t}\right) R_{f, t+1}-c_{t} \\
w_{t+1} \geq 0
\end{array}\right.
\end{aligned}
$$

Property: x_{t} and c_{t} / w_{t} not dependent on $w_{t} \Rightarrow$ Aggregation.

An Endowment Economy in Discrete Time

- Step 2: Individual optimization problem.

$$
\begin{aligned}
& V\left(w_{t}, Y_{t}\right)=\max _{x_{t}, c_{t}}\left\{u\left(c_{t}\right)+\beta E_{t}\left[V\left(w_{t+1}, Y_{t+1}\right)\right]\right\} \\
& \text { s.t. } \\
& \left\{\begin{array}{l}
w_{t+1}=w_{t} x_{t} \frac{P_{t+1}+Y_{t+1}}{P_{t}}+w_{t}\left(1-x_{t}\right) R_{f, t+1}-c_{t} \\
w_{t+1} \geq 0
\end{array}\right.
\end{aligned}
$$

Property: x_{t} and c_{t} / w_{t} not dependent on $w_{t} \Rightarrow$ Aggregation.

- Step 3: Market clearing.
- Total wealth equal to total assets:

$$
W_{t}=P_{t}
$$

- Aggregate net borrowing is zero (bond market clearing):

$$
1-x_{t}=0
$$

- Consumption equal to production:

$$
C_{t}=Y_{t}
$$

An Endowment Economy in Continuous Time

- A unit mass of productive assets that produce consumption goods $Y_{t}=\exp \left(\tilde{Y}_{t}\right)$, where the process follows an OU process

$$
d \tilde{Y}_{t}=-\phi \tilde{Y}_{t} d t+\sigma d B_{t}
$$

Note: This is a continuous time analog to $\operatorname{AR}(1)$ process.

- A continuum of households live in the economy. They can trade both the riskfree bonds and the productive asset in a fully competitive market. Objective function:

$$
\max E\left[\int_{0}^{\infty} e^{-\rho t} u\left(c_{t}\right)\right]
$$

An Endowment Economy in Continuous Time

- Step 1: Determine state variables.
- Under a homogeneous economy (all agents have exactly the same endowment to start with), or $u\left(c_{t}\right)$ belongs to CRRA (or other appropriate) utility functions, the only state variable is Y_{t}.
- Extra step: The returns of assets in a continuous stochastic environment is not immediately clear. Conjecture

$$
\frac{d P_{t}}{P_{t}}=\mu_{P, t} d t+\sigma_{P, t} d B_{t}
$$

Trick: All processes will be within the same class of Ito's processes. The largest extensible class is semi-martingales, where both jump and diffusions appear. Then the return of productive asset is

$$
\frac{Y_{t} d t+d P_{t}}{P_{t}}=\left(\frac{Y_{t}}{P_{t}}+\mu_{P, t}\right) d t+\sigma_{P, t} d B_{t}
$$

An Endowment Economy in Continuous Time

- Step 2: Individual optimization problem.

$$
\begin{aligned}
& V\left(w_{t}, Y_{t}\right)=\max _{x_{t}, c_{t}} E_{t}\left[\int_{t}^{\infty} e^{-\rho t} u\left(c_{s}\right) d s\right] \\
& \text { s.t. } \\
& \left\{\begin{array}{l}
d w_{t}=w_{t} x_{t} \frac{Y_{t} d t+d P_{t}}{P_{t}}+w_{t}\left(1-x_{t}\right) r_{t} d t-c_{t} d t \\
w_{t} \geq 0
\end{array}\right.
\end{aligned}
$$

- Step 3: Market clearing.
- Total wealth equal to total assets (budget constraint):

$$
W_{t}=P_{t}
$$

- Aggregate net borrowing is zero (bond market clearing):

$$
1-x_{t}=0
$$

- Productive asset market clearing is implied by the above two from Walras law.
- Consumption equal to production:

$$
C_{t}=Y_{t}
$$

An Endowment Economy in Continuous Time

- The problem is more tractable under continuous time with CRRA utility. With log utility, we don't need to solve ODEs. Under log utility, agents behave as if "myopic",

$$
\begin{gathered}
c_{t}=\rho w_{t} \\
x_{t}=\frac{Y_{t} / P_{t}+\mu_{P, t}-r_{t}}{\sigma_{P, t}^{2}}
\end{gathered}
$$

- Market clearing implies

$$
\begin{gathered}
Y_{t}=\rho P_{t} \\
Y_{t} / P_{t}+\mu_{P, t}-r_{t}=\sigma_{P, t}^{2}
\end{gathered}
$$

- Why we don't have enough equations?
- Special technique in continuous time: Differential over market clearing condition. Match both $d t$ and $d B_{t}$.

$$
\begin{gathered}
Y_{t} \sigma d B_{t}+Y_{t}\left(-\phi \ln \left(Y_{t}\right)+\frac{1}{2} \sigma^{2}\right) d t=\rho P_{t} \mu_{P, t} d t+\rho P_{t} \sigma_{P, t} d B_{t} \\
\Rightarrow\left\{\begin{array}{l}
\sigma_{P, t}=\sigma \\
\mu_{P, t}=\frac{-\phi \ln \left(Y_{t}\right)+\sigma^{2} / 2}{\rho P_{t}}
\end{array}\right.
\end{gathered}
$$

An Endowment Economy in Continuous Time

- Summary of solutions

$$
\begin{aligned}
P_{t} & =Y_{t} / \rho \\
\sigma_{P, t} & =\sigma \\
\mu_{P, t} & =\frac{-\phi \ln \left(Y_{t}\right)+\sigma^{2} / 2}{Y_{t}} \\
r_{t} & =\rho-\sigma^{2}+\frac{-\phi \ln \left(Y_{t}\right)+\sigma^{2} / 2}{Y_{t}}
\end{aligned}
$$

- Key advantages of continuous time:
(1) Easier to solve for portfolio choice problems.
(2) Simpler representation and calculation (Ito calculus) of stochastic processes.

Table of Contents

(1) A Comparison of Continuous Time and Discrete Time General Equilibrium
(2) Individual Portfolio Choice Problems
(3) Two Agent Economy

Portfolio Choice under Log Utility

- Key simplification: In a competitive market, each agent takes price processes as fully exogenous.
- Asset return (could be a vector)

$$
d R_{t}=\mu\left(s_{t}\right) d t+\sigma\left(s_{t}\right) d B_{t}
$$

where s_{t} is a vector of state variables that also follows a Ito process where Ito calculus is applicable.

- An individual with \log utility and pure consumption portfolio choice problem:

$$
\begin{aligned}
& \max E\left[\int_{0}^{\infty} e^{-\rho t} \log \left(c_{t}\right)\right] \\
& \text { s.t. } \\
& \left\{\begin{array}{l}
\frac{d w_{t}}{w_{t}}=x_{t} \cdot d R_{t}+\left(1-\mathbf{1} \cdot x_{t}\right) r_{t} d t-\frac{c_{t}}{w_{t}} d t \\
w_{t} \geq 0
\end{array}\right.
\end{aligned}
$$

- Value function denoted as $V\left(w_{t}, s_{t}\right)$.

Portfolio Choice under Log Utility

- Key solution technique: HJB equation + conjecture verification.
- Suppose $\left\{c_{s}^{*}, x_{s}^{*}, s \geq t\right\}$ are optimal starting from $w_{t}=1$, then $\left\{w_{t} c_{s}^{*}, x_{s}^{*}, s \geq t\right\}$ are optimal starting from w_{t}.
- Immediate implication:

$$
\begin{gathered}
V\left(w_{t}, s_{t}\right)=E_{t}\left[\int_{t}^{\infty} e^{-\rho(s-t)} \log \left(c_{s}\right) d s\right] \\
=E_{t}\left[\int_{t}^{\infty} e^{-\rho(s-t)} \log \left(w_{t} c_{s}^{*}\right) d s\right]=\frac{1}{\rho} \log \left(w_{t}\right)+v\left(s_{t}\right)
\end{gathered}
$$

for some $v(\cdot)$, where c_{t}^{*} is the path starting from $w_{t}=1$.

- Proof: counterarguments.
- With the separable value function, we can now derive the HJB equation and portfolio choice problems explicitly.

Portfolio Choice under Log Utility

- HJB equation derivation:

$$
\begin{gathered}
V\left(w_{t}, s_{t}\right) \approx \max _{c_{t}, x_{t}}\left\{\log \left(c_{t}\right) d t+E_{t}\left[e^{-\rho d t} V\left(w_{t+d t}, s_{t+d t}\right)\right]\right\} \\
\approx \max _{c_{t}, x_{t}}\left\{\log \left(c_{t}\right) d t+(1-\rho d t) E_{t}\left[V\left(w_{t+d t}, s_{t+d t}\right)\right]\right\}
\end{gathered}
$$

- By Ito's calculus,

$$
\begin{gathered}
E_{t}\left[V\left(w_{t+d t}, s_{t+d t}\right)\right]=V\left(w_{t}, s_{t}\right)+E_{t}\left[V_{w}^{\prime}\left(w_{t}, s_{t}\right) d w_{t}+\frac{1}{2} V_{w}^{\prime \prime}\left(w_{t}\right)\left(d w_{t}\right)^{2}\right. \\
\left.+V_{s}^{\prime}\left(w_{t}, s_{t}\right) d s_{t}+\frac{1}{2} V_{s s}^{\prime}\left(w_{t}, s_{t}\right)\left(d s_{t}\right)^{2}+V_{s w}^{\prime \prime}\left(w_{t}, s_{t}\right) d w_{t} d s_{t}\right]
\end{gathered}
$$

Here the separability of value function helps to reduce the above to

$$
\begin{gathered}
E_{t}\left[V\left(w_{t+d t}, s_{t+d t}\right)\right]=V\left(w_{t}, s_{t}\right)+E_{t}\left[\frac{1}{\rho} \frac{d w_{t}}{w_{t}}-\frac{1}{2} \frac{1}{\rho}\left(\frac{d w_{t}}{w_{t}}\right)^{2}\right. \\
\left.+v_{s}{ }^{\prime}\left(s_{t}\right) d s_{t}+\frac{1}{2} v_{s s}{ }^{\prime}\left(s_{t}\right)\left(d s_{t}\right)^{2}\right]
\end{gathered}
$$

Portfolio Choice under Log Utility

- Optimization:

$$
\begin{gathered}
\max _{c_{t}, x_{t}}\left\{\log \left(c_{t}\right) d t+E_{t}\left[\frac{1}{\rho} \frac{d w_{t}}{w_{t}}-\frac{1}{2 \rho}\left(\frac{d w_{t}}{w_{t}}\right)^{2}\right]\right\} \\
\Rightarrow \max _{c_{t}, x_{t}}\left\{\rho \log \left(c_{t}\right)-\frac{c_{t}}{w_{t}}+x_{t} \cdot\left(\mu_{t}-r_{t}\right)-\frac{1}{2} x_{t}^{T} \sigma_{t} \sigma_{t}^{T} x_{t}\right\} \\
\Rightarrow c_{t}=\rho w_{t}, \quad x_{t}=\left(\sigma_{t} \sigma_{t}^{T}\right)^{-1}\left(\mu_{t}-r_{t}\right)
\end{gathered}
$$

- Important: The state variable s_{t} could almost follow any process without affect the portfolio choice problems of a log-utility agent. Easy to embed into a general equilibrium problem.

Table of Contents

(1) A Comparison of Continuous Time and Discrete Time General Equilibrium
(2) Individual Portfolio Choice Problems
(3) Two Agent Economy

The Model Setup in Problem Set 3

- A unit mass of bankers and households. Bankers solve

$$
E_{s}\left[\int_{s}^{\infty} e^{-\rho(t-s)} \ln \left(c_{t}\right) d t\right]
$$

and households solve

$$
E_{s}\left[\int_{s}^{\infty} e^{-\rho^{h}(t-s)} \ln \left(c_{t}^{h}\right) d t\right]
$$

- Output from per unit productive asset

$$
\frac{d Y_{t}}{Y_{t}}=g d t+\sigma_{Y} d Z_{t}
$$

Only bankers can hold the productive asset. No bank equity issuance to households.

- Household labor income (why we need labor income?)

$$
\frac{d L_{t}}{L_{t}}=g d t+\sigma_{L} d Z_{t}
$$

Equilibrium Solution

- Step 1: Determine state variables.
Y_{t}, L_{t}, and banker wealth share w_{t} (or leverage).
Q: What if we have a third type of agents?
- Step 2: Individual optimization problem.

$$
\begin{gathered}
x_{t}=\frac{Y_{t} / P_{t}+\mu_{P, t}-r_{t}}{\sigma_{P, t}^{2}} \\
c_{t}^{b}=\rho w_{t} \\
c_{t}^{h}=\rho^{h} w_{t}^{h}
\end{gathered}
$$

Equilibrium Solution

- Step 3: Market clearing.
- Consumption goods clearing.

$$
\begin{gathered}
C_{t}^{b}+C_{t}^{h}=Y_{t}+L_{t} \\
\Rightarrow \rho W_{t}^{b}+\rho^{h} W_{t}^{h}=Y_{t}+L_{t}
\end{gathered}
$$

- Risky asset investment clearing.

$$
x_{t} W_{t}^{b}=P_{t}
$$

- Bond market clearing, which is implied by Walras law and wealth identity

$$
W_{t}^{b}+W_{t}^{h}=P_{t}
$$

- Special trick: Differentiating on the aggregate equation to match dynamics.

$$
d\left(\rho W_{t}^{b}+\rho^{h} W_{t}^{h}\right)=d\left(Y_{t}+L_{t}\right)
$$

Equilibrium Solution

- Step 3: Market clearing.
- Consumption goods clearing.

$$
\begin{gathered}
C_{t}^{b}+C_{t}^{h}=Y_{t}+L_{t} \\
\Rightarrow \rho W_{t}^{b}+\rho^{h} W_{t}^{h}=Y_{t}+L_{t}
\end{gathered}
$$

- Risky asset investment clearing.

$$
x_{t} W_{t}^{b}=P_{t}
$$

- Bond market clearing, which is implied by Walras law and wealth identity

$$
W_{t}^{b}+W_{t}^{h}=P_{t}
$$

- Special trick: Differentiating on the aggregate equation to match dynamics.

$$
d\left(\rho W_{t}^{b}+\rho^{h} W_{t}^{h}\right)=d\left(Y_{t}+L_{t}\right)
$$

Equilibrium Solution

What if Households Can Directly Invest in Capital?

