The Distortionary Effects of Central Bank Direct Lending on Firm Quality Dynamics

Wenhao Li¹ Ye Li²

¹USC Marshall School of Business

²Ohio State University Fisher College of Business

May 15, 2021

New Norm: Central Bank Direct Lending (CBDL) to Firms

- Central bank lending to firms is becoming the "new norm" globally.
 - ▶ Post-2008: BOJ, ECB and BOE all have corporate bond purchase programs.
 - During COVID-19: Fed's Corporate Bond Credit Facilities; Main Street Lending Program (MSLP).
 - ▶ MSLP provides LIBOR + 3% rate for all borrowers.
- Q: how will CBDL affect post-crisis recovery and effectiveness/scale of future crises interventions?

Our paper: Although boosting aggregate investment, govt direct lending distorts firm quality dynamics due to the lack of differentiation.

- During crisis: high-quality firms overpay but low-quality firms underpay for CBDL. The natural "cleansing effect" is weakened.
- Outside crisis: expectations of future CBDL distort quality growth.

Our paper: Although boosting aggregate investment, govt direct lending distorts firm quality dynamics due to the lack of differentiation.

- During crisis: high-quality firms overpay but low-quality firms underpay for CBDL. The natural "cleansing effect" is weakened.
- Outside crisis: expectations of future CBDL distort quality growth.
- Self-perpetuating:

more quality distortion ↓ larger-scale intervention

Our paper: Although boosting aggregate investment, govt direct lending distorts firm quality dynamics due to the lack of differentiation.

- During crisis: high-quality firms overpay but low-quality firms underpay for CBDL. The natural "cleansing effect" is weakened.
- Outside crisis: expectations of future CBDL distort quality growth.
- Self-perpetuating:

more quality distortion the larger-scale intervention

• Gradualism is beneficial: tight government interventions always improve welfare, while aggressive ones usually decrease welfare.

Our paper: Although boosting aggregate investment, govt direct lending distorts firm quality dynamics due to the lack of differentiation.

- During crisis: high-quality firms overpay but low-quality firms underpay for CBDL. The natural "cleansing effect" is weakened.
- Outside crisis: expectations of future CBDL distort quality growth.
- Self-perpetuating:

more quality distortion the larger-scale intervention

- Gradualism is beneficial: tight government interventions always improve welfare, while aggressive ones usually decrease welfare.
- Extensions to banks and corporate liquidity management.

Outline

The Benchmark Economy

2 Equilibrium Under Government Intervention

Orporate Liquidity Management

4 Summary

Preferences and Technology

• A continuous-time economy with a government and a unit of mass of households. Risk-neutral utility,

$$E[\int_{t=0}^{\infty} e^{-rt} dc_t]$$

where c_t is the cumulative consumption process.

Preferences and Technology

• A continuous-time economy with a government and a unit of mass of households. Risk-neutral utility,

$$\mathsf{E}[\int_{t=0}^{\infty} e^{-rt} dc_t]$$

where c_t is the cumulative consumption process.

- A continuum of firms of type H and L, with different capital productivity, $A^H > A^L$.
 - Equity-only firms owned by households. Capital value $q_t^j, j \in \{H, L\}$ is endogenous.
 - Total output: $Y_t = A^H K_t^H + A^L K_t^L$
 - Capital quality refers to the fraction of H-type firms:

$$\omega_t = \frac{K_t^H}{K_t^H + K_t^L}$$

Preferences and Technology

• A continuous-time economy with a government and a unit of mass of households. Risk-neutral utility,

$$\mathsf{E}[\int_{t=0}^{\infty} e^{-rt} dc_t]$$

where c_t is the cumulative consumption process.

- A continuum of firms of type H and L, with different capital productivity, $A^H > A^L$.
 - Equity-only firms owned by households. Capital value $q_t^j, j \in \{H, L\}$ is endogenous.
 - Total output: $Y_t = A^H K_t^H + A^L K_t^L$
 - Capital quality refers to the fraction of H-type firms:

$$\omega_t = \frac{K_t^H}{K_t^H + K_t^L}$$

- Normal-time investment opportunities arrive at idiosyncratic Poisson shocks dN'_t .
 - Technology: x^j_tk^j_t amount of goods into F(x^j_t)k^j_t. Targeted investment level t^j_t determined by q-theory:

$$q_t^j F'(\overline{\iota}_t^j) = 1, \quad j \in \{H, L\}$$

Financial Constraints and Crises

• Collateral constraint (due to limited commitment to pay households):

- Kiyotaki and Moore (1997); Geanakoplos (2010); Rampini and Viswanathan (2010).
- Assumption: this constraint is not binding in normal times.

Financial Constraints and Crises

• Collateral constraint (due to limited commitment to pay households):

- Kiyotaki and Moore (1997); Geanakoplos (2010); Rampini and Viswanathan (2010).
- Assumption: this constraint is not binding in normal times.
- Crisis: systematic Poisson shocks dN_t (intensity λ) that hits all firms, but firms can make new investment to rebuild capital.
 - For a single firm, u fraction of capital is destroyed, and $u \in [0, 1]$ is randomly drawn from CDF $G(\cdot)$. Collateral constraint becomes

new investment collateral value of capital after crisis

For large enough u, this constraint will be binding.

Benchmark (no govt funding) - Investment and Financing in Crises

• Firm's profit of investment (per unit of pre-crisis capital):

$$\pi(u_t, q_t^j) = \max_{x \le \chi(1-u_t)q_t^j} \left\{ q_t^j F(x) - x \right\}$$

In expectation, the profit is $\Pi(q_t^j) = \mathbb{E}_u[\pi(u_t, q_t^j)].$

Benchmark (no govt funding) - Investment and Financing in Crises

• Firm's profit of investment (per unit of pre-crisis capital):

$$\pi(u_t, q_t^j) = \max_{x \le \chi(1-u_t)q_t^j} \left\{ q_t^j F(x) - x \right\}$$

In expectation, the profit is $\Pi(q_t^j) = \mathbb{E}_u[\pi(u_t, q_t^j)].$

• Capital pricing equation (U is the expectation of capital destruction shock u):

Benchmark (no govt funding) - Investment and Financing in Crises

• Firm's profit of investment (per unit of pre-crisis capital):

$$\pi(u_t, q_t^j) = \max_{x \le \chi(1-u_t)q_t^j} \left\{ q_t^j F(x) - x \right\}$$

In expectation, the profit is $\Pi(q_t^j) = \mathbb{E}_u[\pi(u_t, q_t^j)].$

• Capital pricing equation (U is the expectation of capital destruction shock u):

• In equilibrium, capital values and investments are constant, and $q^H > q^L$.

Private-Market Allocations in Crises

Benchmark (no govt funding) – Cleansing Effects of Crises

- Capital quality, ω_t jumps up during a crisis ("cleansing effects"). Two reasons:
 - ► Collateral constraint is tighter for L-type firms, i.e., $\chi(1-u)q^L < \chi(1-u)q^H$.
 - Unconstrained investment is lower for L-type firms, $\bar{\iota}^L < \bar{\iota}^H$.

Outline

The Benchmark Economy

2 Equilibrium Under Government Intervention

Orporate Liquidity Management

4 Summary

Government Credit Policy

- Private market: perfectly differentiate H and L firms, but subject to credit constraints.
- Government funding: resolve the credit constraint, but cannot discriminate firms.
 - A key feature observed in reality, e.g., PPP, MSLP.
 - Two motivations: (1) political constraints government should not "pick winners and losers"; (2) information disadvantage of central authorities (Hayek, 1945).
- For g^j_t amount of government financing to type-j firm, the government asks for γ_tg^j_t units of capital as payment.

• With government funding, the firm chooses between private-market funding and government funding in a crisis. Profit per unit of pre-crisis capital:

$$\pi(u_t, q_t^j, \gamma_t) \equiv \max_{x \ge 0, g \ge 0} \underbrace{q_t^j F(x+g)}_{\text{value of new capital}} - \underbrace{cost \text{ of private-market funding}}_{\text{cost of govt funding}} - \underbrace{q_t^j \gamma_t g}_{\text{cost of govt funding}},$$

s.t. collateral constraint: $x \leq \chi (1 - u_t) q_t^j$

• With government funding, the firm chooses between private-market funding and government funding in a crisis. Profit per unit of pre-crisis capital:

$$\begin{split} \pi(u_t, q_t^j, \gamma_t) &\equiv \max_{x \geq 0, \, g \geq 0} \underbrace{q_t^j F\left(x + g\right)}_{\text{value of new capital}} - \underbrace{\cost \text{ of private-market funding}}_{\text{cost of private-market funding}} - \underbrace{q_t^j \gamma_t g}_{\text{cost of govt funding}}, \end{split}$$
s.t. collateral constraint: $x \leq \chi(1 - u_t) q_t^j$

• "Cheap" government funding $(\gamma_t q_t^j \leq 1)$: finance everything via government.

• With government funding, the firm chooses between private-market funding and government funding in a crisis. Profit per unit of pre-crisis capital:

$$\begin{aligned} \pi(u_t, q_t^j, \gamma_t) &\equiv \max_{x \geq 0, \, g \geq 0} \underbrace{q_t^j F\left(x + g\right)}_{\text{value of new capital}} - \underbrace{\cost \text{ of private-market funding}}_{\text{cost of govt funding}} - \underbrace{q_t^j \gamma_t g}_{\text{cost of govt funding}} , \end{aligned} \\ \text{s.t. collateral constraint:} \qquad x \leq \chi(1 - u_t) q_t^j \end{aligned}$$

- "Cheap" government funding $(\gamma_t q_t^j \leq 1)$: finance everything via government.
- "Expensive" government funding $(\gamma_t q_t^j > 1)$: pecking-order financing.
 - Small u_t : use private funding up to achieve $\overline{\iota}_t^J$.
 - Large u_t : exhaust private-funding capacity $\chi(1-u_t)q_t^j$, and supplement with govt funding.

• With government funding, the firm chooses between private-market funding and government funding in a crisis. Profit per unit of pre-crisis capital:

$$\pi(u_t, q_t^j, \gamma_t) \equiv \max_{\substack{x \ge 0, g \ge 0 \\ \text{value of new capital}}} \frac{q_t^j F(x+g)}{-\cos t \text{ of private-market funding}} - \underbrace{\chi_t^j \gamma_t g}{\cos t \text{ of govt funding}},$$
s.t. collateral constraint: $x \le \chi(1-u_t)q_t^j$

- "Cheap" government funding $(\gamma_t q_t^j \leq 1)$: finance everything via government.
- "Expensive" government funding $(\gamma_t q_t^j > 1)$: pecking-order financing.
 - Small u_t : use private funding up to achieve $\overline{\iota}_t^J$.
 - Large u_t : exhaust private-funding capacity $\chi(1-u_t)q_t^j$, and supplement with govt funding.
- Restrict $\gamma_t \in [1/q_t^H, 1/q_t^L]$.

Allocations with both Private Market and Government

Government Funding Weakens the Cleansing Effects: Channels

- Govt funding in crisis reduces capital decline, but weakens the cleansing effect.
 - L firms fully rely on govt funding while only highly constrained H firms need govt funding ⇒ The wedge between q^H and q^L declines.
 - ▶ Two channels: (1) collateral constraint tightness (2) target investment level.

Government Funding Weakens the Cleansing Effects: Dynamics

• A more lenient government funding further reduces capital decline, but worsens the capital quality dynamics.

Expectation Effects

• Expectations of crises interventions drive normal-time economic dynamics.

Intervention Begets More Intervention

- Assume agents believe no intervention (expectation effect is off). Compare two cases:
 - No actual government intervention.
 - ② Government actually intervened during crises.

Q: To get GDP drop=10%, how much extra govt funding is needed for an immediate crisis due to previous intervention?

Intervention Expectation Causes More Intervention

• Assume no actual intervention. Compare two cases of different beliefs:

Agents believe there will be NO government intervention.

2 Agents believe there will be government intervention.

Q: To get GDP drop=10%, how much extra govt funding is needed due to the expectation of intervention?

Welfare Implications

• The welfare is defined as the present value of household consumption streams:

$$W(\omega_0; \boldsymbol{\gamma}) K_0 \equiv E_0 \left[\int_0^\infty e^{-rt} \left(\underbrace{C_t dt}_{\text{normal time consumtpion}} - \underbrace{I_t \cdot dN_t}_{\text{crisis-time investment}} \right) \right]$$

- Lenient govt funding affects welfare by
 - (1) increasing investment costs in crisis
 - (2) reducing capital quality
 - (3) dampening capital decline

Welfare Implications

- What is the improvement of welfare due to government funding?
- Gradualism is valuable: tight govt funding always improves welfare, while lenient funding may destroy welfare.

Optimal Government Policy

• Optimal pricing: $\gamma(\omega_0) = \max_{\gamma} W(\omega_0; \gamma)$

Outline

The Benchmark Economy

2 Equilibrium Under Government Intervention

Orporate Liquidity Management

Corporate Liquidity Holdings

- Firms can accumulate liquid assets as a caution against crises. How will government credit provision interacts with savings incentives?
 - Related to dynamic liquidity management: Bolton, Chen, and Wang (2011); Hugonnier, Malamud, and Morellec (2015).
- Denote liquid asset return as $r_M < r$, so the liquidity carry cost is $r r_M$.
 - Eventually this cost is affected by the supply of liquid assets.
- Proposition: with government intervention, only H-type firms hold liquidity.

Corporate Liquidity Holdings and Cleansing Effects

- Lower liquidity carry cost in normal times \Rightarrow H firms better self-insured \Rightarrow
 - $\textbf{0} Less need for govt funding <math>\Rightarrow$ more cleansing effects
 - ② Even for the same amount of govt funding, cleansing effects are stronger.

Corporate Liquidity Holdings and the Expectation Effects

- Lower liquidity carry cost improves the expectation effects, by
 - increasing H-type capital value
 - e decreasing L-type capital value

Outline

The Benchmark Economy

2 Equilibrium Under Government Intervention

Orporate Liquidity Management

Summary: Central Bank Direct Lending Affects Firm Quality Dynamics

- The lack of differentiation distorts firm quality dynamics
 - During crisis: high-quality firms overpay but low-quality firms underpay for CBDL. The natural "cleansing effect" is weakened.
 - Outside crisis: expectations of future CBDL distort quality growth.
- Inefficiencies are self-perpetuating:

more quality distortion

\$

larger-scale intervention

• Gradualism is beneficial: tight government interventions always improve welfare, while aggressive ones usually decrease welfare.